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Bir sərhəd məsələsinin şəbəkə 

üsulu ilə həlli 
 

Xülasə 
 

Diferensial tənliklərin həlli üçün ən geniş yayılmış və universal ədədi üsul sonlu fərqlər üsuludur. 

Üsulun əsas məzmunu aşağıdakılardan ibarətdir. Arqumentin kəsilməz dəyişmə oblastı (məsələn, bir 

kəsik) düyünlər adlanan diskret nöqtələr çoxluğu ilə əvəz edilir. Bu düyünlər fərqlər şəbəkəsini 

yaradır. Kəsilməz arqumentin axtarılan funksiyası verilmiş şəbəkə üzərində diskret arqument 

funksiyası ilə yaxınlaşdırılır. Bu funksiya şəbəkə funksiyası adlanır. İlkin diferensial tənlik şəbəkə 

funksiyasına görə fərq tənliyi ilə əvəz edilir. Bu zaman tənlikdəki daxil olan törəmələr müvafiq sonlu 

fərqlər sxemi vasitəsilə ədədi olaraq aproksimasiya olunur. Diferensial tənliyin fərq tənliyi ilə əvəz 

olunmasına onun şəbəkə üzərində aproksimasiyası (və ya fərqlər aproksimasiyası) deyilir. Diferensial 

tənliyin həlli şəbəkənin düyünlərində şəbəkə funksiyasının qiymətlərinin tapılmasına gətirilir. 

Diferensial tənliyin fərq tənliyi ilə əvəz edilməsinin əsaslandırılması, alınan həllərin dəqiqliyi, 

metodun dayanıqlılığı — diqqətlə öyrənilməsini tələb edən ən mühüm məsələlərdir. Sonlu fərqlər 

üsulu xüsusilə sərhəd və başlanğıc məsələlərinin ədədi həllində geniş tətbiq olunur. Bu metodun 

köməyi ilə mürəkkəb analitik həlli olmayan diferensial tənliklər praktik şəkildə hesablana bilir. 

Şəbəkənin addımının seçilməsi hesablamaların dəqiqliyinə və hesablamaya birbaşa təsir göstərir. 

Buna görə də optimal addımın müəyyən edilməsi mühüm praktiki məsələ hesab olunur. 

Açar sözlər: sonlu fərqlər metodu, diferensial tənliklər, fərq tənliyi, aproksimasiya, dayanıqlıq və 

dəqiqlik, kəsilməzlik, düyün nöqtəsi 
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Solution of a Boundary Value Problem 

by the Grid Method
 

Abstract 
 

The most widespread and universal numerical method for solving differential equations is the 

finite difference method. The main idea of the method is as follows. The continuous domain of 

variation of the argument (for example, an interval) is replaced by a set of discrete points called nodes. 

These nodes form a difference grid. The sought function of a continuous argument is approximated 

by a discrete-argument function defined on the given grid. This function is called a grid function. The 

original differential equation is replaced by a difference equation with respect to the grid function. In 

this process, appropriate finite difference relations are used to approximate the derivatives appearing 

in the equation. The replacement of a differential equation by a difference equation is called its 

approximation on the grid (or finite difference approximation). Solving the differential equation is 

thus reduced to finding the values of the grid function at the grid nodes.
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The justification of replacing the differential equation with a difference equation, the accuracy of the 

obtained solutions, and the stability of the method are among the most important issues that require 

careful study. The finite difference method is widely used, especially in the numerical solution of 

boundary and initial value problems. With the help of this method, differential equations that do not 

have a complex analytical solution can be solved in a practical manner. The choice of the grid step 

directly affects the accuracy of the calculations and the computational process. Therefore, 

determining the optimal step size is considered an important practical issue. 

Keywords: finite difference method, differential equations, difference equation, approximation, 

stability and accuracy, continuity, grid point 

 

Giriş 
 

Təcrübədə tez-tez elə məsələləri həll etmək lazım gəlir ki, burada şərtlər müstəqil dəyişənin iki 

qiymətində (baxılan parçanın uclarında) verilir. Belə məsələlər sərhəd məsələləri adlanır və yüksək 

tərtibli tənliklərin və ya tənliklər sisteminin həlli zamanı yaranır. Sərhəd məsələlərinin ədədi həll 

üsulları iki qrupa bölünür (Atkinson, 1989, s. 120–210): 

Birinci qrupa şərti olaraq elə üsulları aid edirik ki, burada sərhəd məsələsinin həlli bir neçə (iki) 

Koşi məsələsinin həllinə gətirilir. Məlumdur ki, həmin məsələlərin həllini müxtəlif üsullarla istənilən 

dəqiqliklə reallaşdırmaq mümkündür. 

İkinci qrupa isə sonlu fərqlər üsulu aid edilir. Bu diferensial operatorlar fərq sxemləri ilə (çox 

vaxt bərabəraddımlı şəbəkədə) əvəz olunur və məsələ xətti cəbri tənliklər sisteminin həllinə gətirilir. 

Nəticələrin dəqiqliyi şəbəkənin müxtəlif addımlarında (çox vaxt h və h/2 olduqda) ikiqat 

hesablama aparmaq yolu ilə qiymətləndirilir (Ascher və b., 1995). 

Məsələnin qoyuluşu 

Əsas (baza) kimi dəyişən əmsallı ikinci tərtibli adi diferensial tənliyi nəzərdən keçirək. 

 

−
𝑑

𝑑𝑥
(𝑘(𝑥)

𝑑𝑢

𝑑𝑥
) + 𝑞(𝑥)𝑢 = 𝑓(𝑥), 0 < 𝑥 < 𝑙,                   (1) 

 

burada əmsallar dəyişəndir 

𝑘(𝑥) ≥ 𝑘 > 0, 𝑞(𝑥) ≥ 0. 
 

Naməlum 𝑢(𝑥)funksiyasının birmənalı təyin edilməsi üçün (1) tənliyi [0, 𝑙] parçasının uclarında 

verilən iki sərhəd şərti ilə tamamlanır (Chapra və Canale, 2015). 

Funksiya 𝑢(𝑥)  (birinci növ sərhəd şərti),  

𝜔(𝑥) = 𝑘(𝑥)
𝑑𝑢

𝑑𝑥
(𝑥) 

 

(ikinci növ sərhəd şərti) və ya onların xətti kombinasiyası (üçüncü növ sərhəd şərti) verilə bilər: 

 

𝑢(0) = 𝜇1 ,                     𝑢(𝑙) = 𝜇2,                                             (2) 

 

𝑘(0)
𝑑𝑢

𝑑𝑥
(0) = 𝜇1 ,       𝑘(𝑙)

𝑑𝑢

𝑑𝑥
(𝑙) = 𝜇2 ,                                   (3) 

 

𝑘(0)
𝑑𝑢

𝑑𝑥
(0) + 𝜎1𝑢(0) = 𝜇1 , 𝑘(𝑙)

𝑑𝑢

𝑑𝑥
(𝑙) + 𝜎2𝑢(𝑙) = 𝜇2. (4) 

 
 

İkinci tərtibli elliptik tənliklər, ümumi forması (1) tənliyi olan, bir çox fiziki-mexaniki proseslərin 

modelləşdirilməsində istifadə olunur (Bakhvalov, 1977). 
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Bundan əlavə, özünəqoşma xassəsinə malik olmayan operatorlu məsələlər də nəzərdən keçirilə 

bilər, məsələn, 

−
𝑑

𝑑𝑥
(𝑘(𝑥)

𝑑𝑢

𝑑𝑥
) + 𝑣(𝑥)

𝑑𝑢

𝑑𝑥
+ 𝑞(𝑥)𝑢 = 𝑓(𝑥),           0 < 𝑥 < 𝑙.    (5) 

 

Konveksiya-diffuziya tənliyi (5) fasiləsiz mühit mexanikasında proseslərin tədqiqində model 

tənlik kimi istifadə olunur (Kreyszig, 2011). 

Sərhəd məsələsinin ədədi həlli 

Adi diferensial tənliklər üçün sərhəd məsələlərinin təxmini həllinə aid hesablama alqoritmlərinin 

qurulması zamanı əsas diqqət tənliklərin, sərhəd şərtlərinin və kəsilməz olmayan olan məsələlərdə 

qoşulma şərtlərinin aproksimasiyası məsələlərinə yönəldilir (Thomas, 1995). 

Müxtəlif normalarda təxmini həllin dəqiqliyinin yoxlanılması aparılır, həmçinin baxılan 

məsələlər sinfi üçün şəbəkə tənliklərinin həllində birbaşa metodların xüsusiyyətləri müzakirə olunur 

(Samarskii və b, 2001, s. 210–280). 

Sərhəd məsələsinin aproksimasiyası [0, 𝑙] parçasında addımı ℎ olan bərabər şəbəkəni 𝜔̄ℎilə işarə 

edək: 

𝜔̄ℎ = {𝑥:  𝑥 = 𝑥𝑖 = 𝑖ℎ,    𝑖 = 0,1, … , 𝑁,  𝑁ℎ = 𝑙}, 
 

burada 𝜔ℎ— daxili düyünlər çoxluğu, ∂𝜔ℎisə sərhəd düyün nöqtələri çoxluğudur. Bundan sonra, 

xüsusi olaraq qeyd edilmədikdə, 𝑢 = 𝑢𝑖 = 𝑢(𝑥𝑖)olduğunu qəbul edəcəyik. Sol fərq törəməsi üçün 

aşağıdakı ifadəni alırıq (Isaacson və Keller, 1994): 

 

𝑢𝑥̅ =
𝑢𝑖 − 𝑢𝑖−1

ℎ
=

𝑑𝑢

𝑑𝑥
(𝑥𝑖) −

ℎ

2

𝑑2𝑢

𝑑𝑥2
+ 𝑂(ℎ2), 

 

yəni sol fərq törəməsi daxili düyün nöqtələri çoxluğunda, 𝑢(𝑥) ∈ 𝐶2(0, 𝑙) olduqda, törəməni  
𝑑𝑢

𝑑𝑥
  

birinci aproksimasiya dəqiqliyi ilə 𝑂(ℎ) yaxınlaşdırır (Gautschi və Birkhäuser, 1997, s. 305–360). 

 

Oxşar şəkildə sağ fərq törəməsi üçün alırıq: 

 

𝑢𝑥 =
𝑢𝑖+1 − 𝑢𝑖

ℎ
=

𝑑𝑢

𝑑𝑥
(𝑥𝑖) +

ℎ

2

𝑑2𝑢

𝑑𝑥2
+ 𝑂(ℎ2), 

 

Üçnöqtəli sxem (𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1) üçün mərkəzi fərq törəməsindən istifadə etmək olar: 

 

𝑢𝑥0 =
𝑢𝑖+1 − 𝑢𝑖−1

ℎ
=

𝑑𝑢

𝑑𝑥
(𝑥𝑖) +

ℎ2

3

𝑑3𝑢

𝑑𝑥3
+ 𝑂(ℎ3), 

 

bu isə 𝑢(𝑥) ∈ 𝐶3(0, 𝑙) olduqda törəməni  
𝑑𝑢

𝑑𝑥
 ikinci tərtib dəqiqliyi ilə aproksimasiya edir. 

İkinci törəmə  
𝑑2𝑢

𝑑𝑥2
 üçün alırıq: 

𝑢𝑥𝑥̅ =
𝑢𝑥 − 𝑢𝑥̅

ℎ
=

𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

ℎ2
. 

 

Bu fərq operatoru 𝑥 = 𝑥𝑖 qovşağında, 𝑢(𝑥) ∈ 𝐶4(0, 𝑙) olduqda, ikinci törəməni ikinci tərtib 

dəqiqliyi ilə aproksimasiya edir. 

Şəbəkənin daxili düyün nöqtələri çoxluğunda diferensial riyazi operatoru aproksimasiya edirik: 

 

𝐿𝑢 = −
𝑑

𝑑𝑥
  (𝑘(𝑥)

𝑑𝑢

𝑑𝑥
) + 𝑞(𝑥)𝑢, 𝑥 ∈ (0, 𝑙),                 (6) 
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Kifayət qədər hamar əmsallar və həll üçün aşağıdakı fərq operatoru ilə: 

 

𝐿𝑦 = −(𝑎𝑦𝑥̅)𝑥 + 𝑐𝑦,     𝑥 ∈ 𝜔ℎ .                                    (7) 
 

İkinci tərtib dəqiqliklə aproksimasiya üçün fərq operatorunun əmsalları elə seçilməlidir ki, 

 
𝑎𝑖+1 − 𝑎𝑖

ℎ
=

𝑑𝑘

𝑑𝑥
(𝑥𝑖) + 𝑂(ℎ2),                                       (8) 

 
𝑎𝑖+1 + 𝑎𝑖

2
= 𝑘(𝑥𝑖) + 𝑂(ℎ2),                                           (9) 

 
𝑐𝑖 = 𝑞(𝑥𝑖) + 𝑂(ℎ2).                                                      (10) 

 

(10)-a uyğun olaraq, məsələn, 𝑐𝑖 = 𝑞(𝑥𝑖)qəbul edək. (8) və (9) şərtləri, xüsusilə, 𝑎𝑖-nin təyin 

edilməsi üçün aşağıdakı düsturları ödəyir: 

 

𝑎𝑖 = 𝑘
𝑖−

1
2

= 𝑘(𝑥𝑖 − 0.5ℎ), 

 

𝑎𝑖 =
𝑘𝑖 + 𝑘𝑖−1

2
, 

 

𝑎𝑖 = 2 (
1
𝑘𝑖

+
1

𝑘𝑖−1
)

−1

. 

 

Diferensial operatorların sonlu fərqlərlə formal əvəzlənməsi metodu sərhəd şərtlərinin 

aproksimasiyasında da istifadə oluna bilər. Ən sadə şəkildə sərhəd şərtləri (2) aşağıdakı kimi 

aproksimasiya olunur (Moin, 2010): 

 

𝑦0 = 𝜇1, 𝑦𝑁 = 𝜇2.                                                              (11) 

 

İkinci və üçüncü növ sərhəd şərtlərinin ikinci tərtibli sərhəd düyünlərində 𝑥 = 𝑥0 = 0 və 𝑥 =
𝑥𝑁 = 𝑙  aproksimasiyası üçün (1) tənliyindən istifadə edilir — aproksimasiya olunan tənliklər kimi. 

Bu halda (1) tənliyindəki kənar şərtlər (4) aşağıdakı fərq münasibətləri ilə aproksimasiya olunur: 

 

−𝑎1𝑦𝑥̅,1 + (𝜎1+
ℎ
2

𝑞0) 𝑢0 = 𝜇1 +
ℎ

2
𝑓0 , 

 

𝑎𝑁𝑦𝑥̅,𝑁 + (𝜎2+
ℎ
2

𝑞𝑁) 𝑢𝑁 = 𝜇2 +
ℎ

2
𝑓𝑁. 

 

Beləliklə, biz aşağıdakı fərq sxeminə malik oluruq — fərq tənliyindən ibarət olan 

 

                                  −(𝑎𝑦𝑥̅)𝑥 + 𝑐𝑦 = 𝜑, 𝑥 ∈ 𝜔ℎ ,                                           (12) 

 

və müvafiq sərhəd şərtlərinin aproksimasiyası ilə tamamlanan. 

Sərhəd məsələsinin həlli üçün Qovma üsulunun tətbiqi (Collatz, 1966). 

Adi diferensial tənlik üçün qoyulmuş kənar məsələnin təxmini həllini tapmaq məqsədilə müvafiq 

xətti cəbri tənliklər sistemini həll etmək lazımdır. Fərq həllini tapmaq üçün xətti cəbrin ənənəvi 

birbaşa metodlarından istifadə olunur. Bu üsullar içərisində geniş yayılmış olanı, xüsusi lentvari 
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(zolaqlı) struktura malik matrislər üçün klassik Qauss üsulunun bir variantı olan proqon alqoritmidir 

(Thomas metodu) (Conte və de Boor, 1980). 

Sərhəd şərtləri ilə birlikdə (12) tənliklər sistemi, üçdiaqonal matrisə malik xətti cəbri tənliklər 

sistemini təşkil edir və bu sistem aşağıdakı formadadır: 

 

−𝛼𝑖𝑦𝑖−1 + 𝛾𝑖𝑦𝑖 − 𝛽𝑖𝑦𝑖−1 = 𝜑𝑖 , 𝑖 = 1,2, … , 𝑁 − 1,                   (13) 

 

𝑦0 = 𝜅1𝑦1 + 𝜇1, 𝑦𝑁 = 𝜅2𝑦𝑁−1 + 𝜇2.                                           (14) 

 

Belə sistemlərin ədədi həlli üçün Proqon üsulu tətbiq olunur; bu üsul proqon əmsallarının 

hesablanması üçün rekurrent düsturları təqdim edir (düz proqon) (Morton və Mayers, 2005): 

 

𝜉𝑖+1 =
𝛽𝑖

𝛾𝑖 − 𝛼𝑖𝜉𝑖
, 𝜗𝑖+1 =

𝜑𝑖 + 𝛼𝑖𝜗𝑖

𝛾𝑖 − 𝛼𝑖𝜉𝑖
, 𝑖 = 1,2, … , 𝑁 − 1, 

 

Burada 

𝜉1 = 𝜅1, 𝜗1 = 𝜇1 . 
 

Həll üçün alırıq (əks proqon): 

 

𝑦𝑖 = 𝜉𝑖+1𝑦𝑖+1 + 𝜗𝑖+1, 𝑖 = 𝑁 − 1, 𝑁 − 2, … ,0, 
 

𝑦𝑁 =
𝜅2𝜗𝑁 + 𝜇2

1 − 𝜅2𝜉𝑁
. 

 

Proqon alqoritmini yalnız o halda tətbiq etmək olar ki, hesablama düsturlarında məxrəclər sıfıra 

bərabər olmasın (Burden və Faires, 2011, s. 515–575). Bundan əlavə, bu üsulun tətbiqinin mümkün 

olması üçün (13) sisteminin həllinin aşağıdakı şərtləri ödəməsi kifayətdir: 

 

𝛼𝑖 ≠ 0, 𝛽𝑖 ≠ 0, ∣ 𝑐𝑖 ∣≥∣ 𝛼𝑖 ∣ +∣ 𝛽𝑖 ∣, 𝑖 = 1,2, … , 𝑁 − 1, 
 

∣ 𝜅1 ∣≤ 1, ∣ 𝜅2 ∣≤ 1. 
 

Tədqiqat 

Sərhəd məsələsinin hesablanması üçün aparılan eksperimental tədqiqat nümunəsi: Aşağıdakı 

ikitərtibli xətti adi diferensial tənliyə baxaq (Finlayson, 1972, s. 200–260): 

 

𝑑2𝑦

𝑑𝑥2
− 2

𝑑𝑦

𝑑𝑥
− 3𝑦 − exp(4x) = 0, 0 < 𝑥 < 1 

 

Sərhəd şərtləri: 

 
𝑑𝑦(0)

𝑑𝑥
− 𝑦(0) = 0.6,

ⅆy(1)

ⅆx
+ 𝑦(1) = 4 exp(3) + exp(4) 

 

Bu sərhəd məsələsinin dəqiq (analitik) həlli aşağıdakı kimidir: 

 

𝑦an(𝑥) = exp(−𝑥) + exp(3x) + 0.2 exp(4x)   
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İndi isə bu aparılmış tədqiqatın həllinin nəticəsinə cədvəl şəklində baxaq: 

 

 

Nəticə 
 

Aparılan tədqiqat göstərir ki, adi diferensial tənliklər üçün sərhəd məsələlərinin ədədi həllində 

sonlu fərqlər metodu həm universallığı, həm də praktik tətbiq imkanları baxımından səmərəli üsuldur. 

Diferensial osperatorların uyğun fərq operatorları ilə əvəz edilməsi problemin diskret formada ifadə 

olunmasına və dəqiqliyin seçilmiş aproksimasiya sxemindən asılı olaraq artırılmasına şərait yaradır. 

Sərhəd məsələsinin bu üsulla aproksimasiyası nəticəsində alınan üçdiaqonal xətti tənliklər sistemi 

Qovma (Thomas) üsulu vasitəsilə hesablama baxımından effektiv və dayanıqlı şəkildə həll olunur. 

Müəyyən dayanıqlıq şərtlərinin ödənilməsi isə hesablamaların etibarlılığını təmin edir. Ümumilikdə, 

təqdim olunan yanaşma mühəndislik və fizika-mexanika sahələrində yaranan mürəkkəb sərhəd 

məsələlərinin yüksək dəqiqliklə modelləşdirilməsi və proqramlaşdırma mühitində praktik həlli üçün 

əlverişli riyazi-alqoritmik baza yaradır. 
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